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Abstract

Most nonrigid objects exhibit temporal regularities in

their deformations. Recently it was proposed that these reg-

ularities can be parameterized by assuming that the non-

rigid structure lies in a small dimensional trajectory space.

In this paper, we propose a factorization approach for 3D

reconstruction from multiple static cameras under the com-

pact trajectory subspace representation. Proposed factor-

ization is analogous to rank-3 factorization of rigid struc-

ture from motion problem, in transfromed space. The ben-

efit of our approach is that the 3D trajectory basis can be

directly learned from the image observations. This also al-

lows us to impute missing observations and denoise track-

ing errors without explicit estimation of the 3D structure.

In contrast to standard triangulation based methods which

require points to be visible in at least two cameras, our ap-

proach can reconstruct points, which remain occluded even

in all the cameras for quite a long time. This makes our so-

lution especially suitable for occlusion handling in motion

capture systems. We demonstrate robustness of our method

on challenging real and synthetic scenarios.

1. Introduction
Nonrigid structures exhibit spatial and temporal regular-

ities in their deformations. In nonrigid structure from mo-
tion, these regularities are usually exploited using subspace
reduction techniques [5, 3]. Akhter et al. [3] proposed a
trajectory based representation of the nonrigid structure to
exploit the temporal smoothness in the trajectroies. In con-
trast to nonrigid structure from motion, multiview stereo
methods and rigid structure from motion, work on the basic
principle of triangulation i.e. a 3D point should lie at the
intersection of the rays formed by its 2D projection on the
image plane and camera center. In this paper, we show that
the triangulation and compact trajectory subspace assump-
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tion can be combined, into a robust factorization approach
for multiview structure reconstruction. Proposed method
allows points to appear and disappear at any time. Points
which are visible in just one camera or the points which re-
main occluded in all the cameras, even for a long duration
of time can be reconstructed accurately. Proposed method
is robust to noise in the image observations.

It was observed that the predefined basis like Discrete
Cosine Transform (DCT) can approximate smooth trajecto-
ries very well [3]. Predefining the trajectory basis simplifies
the estimation procedure on one hand, whereas compromise
the representation quality on the other. Hence, it is hard to
argue, which of these two approaches is better. We suggest
a mixture of both of these approaches to estimate trajectory
basis. Our key observation is that the trajectory basis can be
directly learned from the image observations. Considering
the 3D trajectory of a point and its image as a 2D trajectory
in a static orthographic camera, we show that the X- and Y-
components of the 2D trajectory are a linear combination of
the X-, Y- and Z- components of the 3D trajectory. There-
fore the 2D trajectory and the 3D trajectory share the same
trajectory space and optimal trajectory basis can be learned
from the image observations.

The observation that the 3D and 2D trajectory bases
share the same trajectory space, gives us one more theoreti-
cal insight into the problem. We show that the 2D trajectory
coefficients and 3D trajectory coefficients are related by a
rank-3 factorization. This relation is analogous to the fac-
torization of image observation matrix into the 3D structure
and orthographic camera matrices in rigid structure from
motion problem [18]. Due to the simplicity of estimation,
proposed approach is equally stable as that of Tomasi and
Kanade rigid structure factorization.

We tested the proposed technique on challenging syn-
thetic and real sequences. We also evaluated our method
on perspective cameras. Our experiments under noise, and
various level of missing observations, highlight the signif-
icance of incorporating trajectory compactness assumption
in multi-camera 3D reconstruction.



2. Related work
The method of triangulation for 3D reconstruction is

one of the most interesting and well studied shape cues in
Computer Vision literature. Though it shows robust results
for rigid 3D reconstruction but non-rigid structure is more
difficult to track (due to non-rigid local deformations and
scarcity of good visual tracking cues) and reconstruct (due
to self occlusions, noise in tracking, trajectory labeling er-
rors and correspondence problems). In most industry ap-
plications of motion capture, tracked infra-red markers are
triangulated in a bundle adjustment framework. Infra-red
markers reduce the tracking problems but self occlusions
and broken trajectory labeling problems still remain. There-
fore, good reconstruction still requires a dozen (or more)
cameras and days of manual intervention for any recon-
struction of significant size and duration [12, 20]. Hardware
help has also been used in sensor fusion where constraints
from multiple sensors are combined to produce robust re-
sults at significant additional cost [14].

The setup cost and robustness issues have led most recent
work to reduce the problem complexity by imposing addi-
tional constraints on the shape or motion of the object(s) to
be reconstructed. Shape constraints include articulated and
parametric shape models [7, 9, 15, 17]. Such shape con-
straints struggle in characterizing most interesting non-rigid
structures by imposing restrictive constraints. Constraints
on motion are more widely applicable in complex scenar-
ios since all realistic and interesting motion is limited by
its speed and kinematic constraints to produce large tempo-
ral inconsistency. Some recent papers [16, 4, 6, 10, 11, 21]
try to use temporal consistency in a local context and show
promising results but lack a stable and global constraint for-
mulation.

Monocular non-rigid reconstruction is usually posed as
a non-rigid structure and motion problem where both the
camera as well as the structure can move. This ill-posed
problem may be solved using constraints on shape and mo-
tion of the non-rigid objects. Subspace reduction is the most
popular approach in this regard which assumes that non-
rigid structure lies in a linear subspace (based on shape or
trajectory) of lower dimensionality. The shape constraints
showed promising results but required the simultaneous
computation of shape basis, shape coefficients and camera
parameters, leading to a very difficult estimation problem
[5, 19]. In contrast, the trajectory formulation [3] simplifies
the reconstruction by using data-independent DCT basis but
lacks the optimality of data dependent basis.

We combine the power of triangulation with temporal
constraints in trajectory space [3, 13] in a principled way
without making any restrictive assumption about the struc-
ture. Moreover, we show that data dependent trajectory
bases can be pre-computed directly from 2D data thus in-
creasing the compactness and applicability of trajectory

subspace without requiring a simultaneous computation of
basis, coefficients and cameras (like the shape basis meth-
ods). This compactness of representation and principled
modeling of temporal consistency allows us to compute a
motion capture comparable reconstruction with very few
cameras while explicitly handling the noise and missing
data in a provided tracking. Our factorization based ap-
proach builds on a linear relationship between 2D and 3D
trajectory coefficients derived in the following section.

3. Trajectory space parametrization
Let us consider a nonrigid structure, consisting of P

points, sampled at F time instances. We represent the tra-
jectory of jth point as the following 3× F matrix

Tj =
(
XT

1j · · · XT
Fj

)
,

where Xfj = [Xfj Yfj Zfj ] denotes the 3D coordinates
of the jth point at time instance f . We consider C static
orthographic cameras viewing this trajectory. We denote tij
as the image of the jth trajectory, viewed by the ith camera.
The 3× F matrix tij is given by the following relation

tij = RiTj − oi,

where oi is a 2× F matrix containing the image of the
world origin in ith camera as its columns. By combining
the information of all the points in all cameras, we can write

W = RS−O, (1)

where

W =

⎛
⎜⎝
t11 · · · t1P

...
. . .

...
tC1 · · · tCP

⎞
⎟⎠ ,R =

⎛
⎜⎝
R1

...
RC

⎞
⎟⎠

S = (T1 · · · TP ) and O =

⎛
⎜⎝
o1 · · · o1

...
. . .

...
oC · · · oC

⎞
⎟⎠ .

We can set O = 0 in Equation 1 by adopting the convention
(suggested in [18]) that world origin lies at the center of
3D structure (i.e. center of all points at all time instances),
camera origin lies at the center of its 2D projection and the
world origin gets imaged to the camera origin. Hence we
can write

W2C×FP = R2C×3S3×FP , (2)

where the subscripts denote the size of each matrix. Equa-
tion 2 shows that nonrigid structure estimation from multi-
ple static cameras can be reduced to the rigid structure from
motion problem. We notice that in Equation 2, it is not re-
quired that all trajectories should be of the same length. In
fact points can appear or disappear at any time. If the length
of the jth trajectory is Fj , then the dimensions of W and S
will become 2C ×∑

j Fj and 3×∑
j Fj , respectively.



Equation 2 is not imposing any spatial or temporal regu-
larities on the nonrigid structure. Since the nonrigid struc-
ture mostly exhibits such regularities, therefore they can be
exploited to increase the robustness of the structure estima-
tion. According to the trajectory model of Akhter et al. [3]
the X , Y and Z components of the jth trajectory can be ap-
proximated as a multiplication of the trajectory coefficients
and the trajectory basis as follows

Tj = AjΘj , (3)

where Θj , a Kj × Fj matrix, consists of the Kj trajectory
basis along its rows and Kj � Fj . Fj is the length of the
jth trajectory. Aj is a 3 × Kj matrix and consists of the
trajectory coefficients of the X , Y and Z components of the
trajectory along its rows. Considering all the trajectories,
we can write

S = AΘ, (4)

where A = (A1, · · · ,AP ) and Θ is given by

Θ =

⎛
⎜⎝
Θ1

. . .
ΘP

⎞
⎟⎠ .

Combining equations 2 and 4, we can write

W = RAΘ.

Since ΘΘT is an identity matrix, therefore we can write

WΘT = RA.

D = RA, (5)

where we denote D = WΘT . We notice that D consists of
the coefficients of 2D trajectories of W, just like A consists
of the coefficients of 3D trajectories. This means that the
image observation and the 3D structure share the same tra-
jectory space. A key theoretical insight of Equation 5 is that
the 2D trajectory coefficients are a linear combination of
the 3D trajectory coefficients and leads to all the interesting
benefits of our approach. Equation 5 is analogous to Equa-
tion 2 in ceoefficient domain and can be seen as structure
from motion in transformed domain. Conventional Tomasi-
Kanade factorization [18] can be used to recover the 3D co-
efficients from the 2D coefficients. This factorization can be
done using linear least square optimization, hence provides
a robust estimation of 3D structure. Once A is known, the
structure can be recovered using Equation 4.

Since both 2D and 3D trajectories share the same low-
dimensional trajectory space, the trajectory basis can be
learnt directly from the image observations. Next, we ex-
plore the link between trajectory space of W and S in more
detail. We also show how trajectory smoothness assumption
may be used to impute missing data.

4. Computing 2D trajectory coefficients
In the previous section, we formulated the trajectory

space parametrization for the estimation of nonrigid struc-
ture using multiple static cameras. Now we will show how
data-independent and data-dependent bases may be used
for structure estimation and imputation of missing data,
followed by a detailed comparison between the two ap-
proaches.

4.1. Using data-independent trajectory basis

The 2D trajectory coefficients D may be computed from
image observation matrix W using D = WΘT if the tra-
jectory basis Θ is known (Eq 5). Akhter et al. proposed
using DCT basis and showed that DCT basis can compactly
represent smooth trajectories and approach to the optimal
linear 3D basis for a large training data [3]. If we use DCT
trajectory basis then D may be directly computed if all the
entries in W are known. When W is incomplete (due to oc-
clusions) trajectory coefficients can still be estimated using
a least squares fit as described below.

Let us denote dij as the 2D trajectory coefficients of tra-
jectory tij i.e. tij = dijΘj . The estimation of dij is over-
constrained and can be done even if there are missing points
in tij (as long as the number of points available in the tra-
jectory is at least Kj). Let t̂ij be the matrix, obtained from
tij , by deleting the columns corresponding to the missing
points. Similarly, Θ̂j denotes the matrix obtained from Θj

by deleting the columns corresponding to the missing points
in tij . dij can be estimated as

dij = t̂ijΘ̂
+
j , (6)

where Θ̂+
j denotes the pseudo-inverse of Θ̂j . Hence miss-

ing data is imputed directly from the image observations.
Then dijs are stacked to form D and factorized to compute
3D trajectory coefficients A. Finally S is estimated using
Equation 4.

4.2. Learning data-dependent trajectory basis

DCT basis are simpler to use but data-dependent basis
represent smooth trajectories more compactly. In non-rigid
structure from motion, computing the optimal trajectory
basis while simultaneously estimating the coefficients and
cameras, results in a difficult trilinear factorization problem.
Since our proposed factorization works in the transformed
domain, we do not face this problem. We compute the tra-
jectory basis Θ directly from the image observations and
the factorization is done afterwards. Here, all the trajecto-
ries are assumed to be of the same length Fj = F and lie in
the same Kj = K dimensional subspace.

The image of the jth trajectory in ith camera is given by

tij = RiTj . (7)
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Figure 1. Robustness of trajectory parametrization in structure es-
timation: The experiment evaluates the effect on accuracy of re-
construction by increasing the number of cameras when using dif-
ferent types of basis. Here comparison is done on accuracy yielded
by PCA(2D) , DCT and simple Tomasi Kanade when noise with
a normal distribution having standard deviation of 20mm is added
to a synthetic Dataset.

Equation 7 shows that the x and y components of tij are
the linear combination of the X , Y and Z components of
the 3D trajectory. Hence if the 3D trajectory lies in a low di-
mensional space, so does its 2D projection. Optimal 3D tra-
jectory basis can be learned through Principal Component
Analysis (PCA), if structure S is known. Singular Value De-
composition (SVD) of the following matrix gives the PCA
trajectory basis

SF×3P =

⎛
⎜⎝
X11 X12 · · · X1P

...
... · · · ...

XF1 XF2 · · · XFP

⎞
⎟⎠ . (8)

Having rearranged the structure into matrix S , we denote
the image observation, viewed by the ith orthographic cam-
era as a F × 2P matrix, Wi. The relation between S and
Wi is as following

Wi = SRi, (9)

where Ri = I ⊗ RT
i and I is a P × P identity matrix.

Hence Ri contains the truncated rotation matrix, RT
i along

its 3× 2 diagonal blocks. In Equation 9, we adopt the same
centering convention as Section 3. Since the column space
of Wi is a linear combination of the column space of S ,
therefore PCA basis learned over the horizontal concatena-
tion of Wis can also serve as the trajectory basis for the
structure S . Hence optimal trajectory basis can be learned
for a given K. Once trajectory basis are known, trajectory
coefficients can be estimated using Equation 5. To the best
of our knowledge, we are the first to demonstrate that op-
timal 3D trajectory basis can be directly learned from the
image observations and use these basis for 3D reconstruc-
tion. Optimality of the basis improves the quality of 3D
reconstruction. Moreover, decoupling the basis estimation
from 3D reconstruction results in a numerically stable and
efficient factorization algorithm.

Estimation of trajectory basis can also be done when
some of image observations are missing. The assumption
that Wi is low rank can be used to impute its missing values
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Figure 2. Comparison of PCA basis learned over a noisy W (2D-
PCA) with DCT and PCA over ground truth structure S (3D-
PCA). Comparison is done on a Mocap dance sequence with
F=1000. The height of the actor is approximatley=1600mm. We
generate synthetic image observation matrices Wi with C number
of cameras, where C = {2, 3}. We add Gaussian noise in Wis
with standard deviation = 10mm in left subplot and 20mm in right
subplot. We learn PCA basis over noisy Wis (i.e. 2D-PCA) and
compare their reconstructions with DCT and 3D-PCA. Plots show
that for smaller values of K, 2D-PCA performs better, whereas for
larger values of K, DCT is a good choice of basis.

using missing data factorization methods like [2, 8]. How-
ever, we adopt a very naive approach to estimate missing
values in Wi. In our synthetic experiments, we learn PCA
basis over the 2D trajectories which were completely visi-
ble in Wis. For real data, we first impute the missing values
using DCT-based interpolation, then learn the trajectory ba-
sis using PCA. Once Wi is complete, trajectory basis can be
learned using PCA. In the following section, we present a
comparison of data-dependent and data-independent bases.

4.3. Data-dependent vs. data-independent bases

We discussed in previous sections that the proposed fac-
torization approach and the compact trajectory parametriza-
tion explicitly handle missing observations and noise in
the data. In this section, we compare the reconstruction
accuracy of proposed approach using both data-dependent
(PCA) and data-independent bases (DCT) under various
levels of noise and missing observations. This comparison
was done on a Motion Capture dance sequence consisting of
1000 frames and 41 points. We generated synthetic images
and tested proposed factorization approach given in Equa-
tion 5. As a matter of notation, we call proposed struc-
ture from motion method SFM DCT, when DCT basis is
used and SFM PCA when PCA basis is used. Our exper-
iments show that in an ideal case i.e. when S lies in a K
dimensional subspace, SFM PCA gives numerically zero
reconstruction error. In Figure 1, we compare SFM DCT,
SFM PCA and factorization method of Tomasi and Kanade
[18] in the presence of noise. Plots show that more cameras
are needed in Tomasi and Kanade factorization to get the
same reconstruction accuracy, as compared to the proposed
method. Specifically 14 cameras are needed in Tomasi and
Kanade method to get the same accuracy as that of proposed



method with just four cameras. Plots also show that the
PCA basis performs significantly better as compared to the
DCT basis, as number of cameras increases. Next we eval-
uate proposed factorization approach under different values
of K in Figure 2. We tried proposed factorization approach
using trajectory basis learned over ground truth 3D struc-
ture (3D-PCA), trajectory basis learned from image obser-
vations (2D-PCA) and DCT. Plots show that under small
standard deviation of noise and for small values of K, 2D-
PCA out-performs DCT. Plots also show that accuracy of
2D-PCA increases with the increase of cameras.

To test the accuracy of structure estimation under miss-
ing observations, we create synthetic occlusion scenarios in
the dance sequence at random locations and reconstruct the
structure. We choose 20 (about half of the points) random
trajectories and delete a set of contiguous points of a certain
length. We test the proposed method of structure estimation
using Equation 5 on both DCT and PCA basis. PCA basis
were learned over image observations. In Figure 3 we plot
reconstruction error of SFM DCT and SFM PCA by vary-
ing the gap length for different values of K. We create three
synthetic cameras and project the 3D structure to get Wis.
In Figure 3(a) trajectories were invisible in all three cameras
for a particular duration of time, whereas in Figure 3(b),
trajectories were visible in one camera only. Plots show
that SFM PCA reconstructs 3D trajectories accurately, even
when 2D trajectories were invisible in all three cameras for
about 300 consecutive frames in the 1000 frame long se-
quence. Figure 3(b) shows that the imputation accuracy
improves when complete trajectory is visible in one cam-
era. Plots also show that SFM DCT is relatively unstable
in finding imputation of the missing data, when gap length
is large. Though PCA based imputation is more stable than
the DCT, its accuracy depends upon the learning of the PCA
basis from the incomplete image observation matrix. In-
complete matrix factorization can be used to estimate PCA
basis. However, this itself is an open research area. Accord-
ing to our knowledge, global solution of incomplete matrix
factorization is still intractable.

5. Results
We did an extensive quantitative and qualitative evalua-

tion of the proposed method. For quantitative evaluation,
we chose 20 different Motion Captured sequences, like run-
ning, jumping, boxing, crawling and dancing. We generated
synthetic perspective cameras and created images. Syn-
thetic images were used to form image observation matrix
W. We run SFM DCT and SFM PCA on W and com-
puted the per point reconstruction error. In Figure 4 we plot
the average reconstruction error of 20 sequences by vary-
ing the distance of the camera from the structure. We did
this experiment with 3, 5 and 7 cameras. We see that the
reconstruction error decreases with the increase of distance

8 10 12 14
0

2

4

6

Distance (m)

A
vg

 re
co

ns
t E

rr
or

 (m
m

)

SFM_DCT

8 10 12 14

5

10

15

20

25

30

Distance (m)

A
vg

 re
co

ns
t E

rr
or

 (m
m

)

SFM_PCA(2D)

C=3
C=5
C=7

C=3
C=5
C=7

Figure 4. Effect of distance on reconstruction error with a Perspec-
tive Camera Model: The experiment evaluates the performance of
DCT and PCA(2D) basis in reducing noise introduced due to per-
spective camera model. Here a circular camera setup is used and
the experiment is repeated with varying number of cameras, in
each sucessive experiment increasing radial distance.

and increase of cameras. This experiment suggests the va-
lidity of the method on a variety of actions. We also tested
our method on two Motion Captured sequences of face and
two dense full body sequences from Performance Capture
database [7]. For face datasets, we created three synthetic
perspective cameras at a distance of 3m from the object,
with one camera fronto parallel to the object and the other
two with an angle of ±45 deg with the center one. For full
body sequences, we generated six perspective cameras. We
used actual camera calibration matrices to get synthetic im-
ages. In Figure 5 we plot the 3D reconstruction on face and
body sequences on a few frames. The colorbar shows the
error in reconstruction in mm. Figure 5(a) and 5(b) show
that the maximum error on face sequences is 1.5mm. Fig-
ure 5(c) and 5(d) demonstrate qualitatively appealing results
on full body sequences. This experiment demonstrates the
performance of the algorithm, under a breakdown of ortho-
graphic camera assumption i.e. reconstruction looks good
qualitatively though reconstruction error is large in compar-
ison with the ground truth.

We also tested proposed method on two real sequences
named dance and jumping-dog from 4D repository [1] as
shown in Figure 6. We did manual tracking in both of these
sequences. We tracked 200 frames in 4 cameras in dance
sequence, whereas in jumping-dog sequence, we tracked 3
cameras in 150 frames. These sequences provide challeng-
ing test cases for the proposed method because of the ex-
treme tracking noise and difficult occlusion scenario. We
observe that out of 34 points in jumping-dog sequence one
points was invisible in all three cameras for eight consecu-
tive frames. About 9 points were invisible in two cameras
for 15 or more consecutive frames, one point was even in-
visible in all 34 consecutive frames. Figure 6 shows the re-
construction using SFM PCA. Results demonstrate the ro-
bustness of the proposed method under tracking noise and
occlusion of the points.
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(a) Trajectories invisible in all three cameras
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(b) Trajectories visible in one camera only

Figure 3. Handling Missing data in image observation matrix: we create synthetic occlusions in cameras for a certain number of frames
and reconstruct the trajectory with SFM PCA and SFM DCT for different values of K. Plots show that the occluded points can be reliably
reconstructed. SFM PCA demonstrate better reconstruction accuracy for larger gaps than SFM DCT.
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Figure 5. Perspective camera reconstruction results on Mocap face sequences. Sub-figures (a) and (b) show our results projected on images
(first row) TK DCT reconstruction (second row). Sub-figures (c) and (d) show perspective camera reconstruction results on Performance
Capture data [7]. Colors indicate error in reconstruction with respect to the ground truth.
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